Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Viruses ; 14(12)2022 11 30.
Article in English | MEDLINE | ID: covidwho-2143729

ABSTRACT

The computational methods used for engineering antibodies for clinical development have undergone a transformation from three-dimensional structure-guided approaches to artificial-intelligence- and machine-learning-based approaches that leverage the large sequence data space of hundreds of millions of antibodies generated by next-generation sequencing (NGS) studies. Building on the wealth of available sequence data, we implemented a computational shuffling approach to antibody components, using the complementarity-determining region (CDR) and the framework region (FWR) to optimize an antibody for improved affinity and developability. This approach uses a set of rules to suitably combine the CDRs and FWRs derived from naturally occurring antibody sequences to engineer an antibody with high affinity and specificity. To illustrate this approach, we selected a representative SARS-CoV-2-neutralizing antibody, H4, which was identified and isolated previously based on the predominant germlines that were employed in a human host to target the SARS-CoV-2-human ACE2 receptor interaction. Compared to screening vast CDR libraries for affinity enhancements, our approach identified fewer than 100 antibody framework-CDR combinations, from which we screened and selected an antibody (CB79) that showed a reduced dissociation rate and improved affinity against the SARS-CoV-2 spike protein (7-fold) when compared to H4. The improved affinity also translated into improved neutralization (>75-fold improvement) of SARS-CoV-2. Our rapid and robust approach for optimizing antibodies from parts without the need for tedious structure-guided CDR optimization will have broad utility for biotechnological applications.


Subject(s)
COVID-19 , Complementarity Determining Regions , Humans , Complementarity Determining Regions/genetics , Antibody Affinity , SARS-CoV-2/genetics , Antibodies, Viral , Spike Glycoprotein, Coronavirus/genetics , Antibodies, Neutralizing
2.
Proc Natl Acad Sci U S A ; 118(5)2021 02 02.
Article in English | MEDLINE | ID: covidwho-1032886

ABSTRACT

Immune response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection during the current pandemic remains a field of immense interest and active research worldwide. Although the severity of acute infection may depend on the intensity of innate and adaptive immunity, leading to higher morbidity and mortality, the longevity of IgG antibodies, including neutralizing activity to SARS-CoV-2, is viewed as a key correlate of immune protection. Amid reports and concern that there is a rapid decay of IgG antibody levels within 1 mo to 2 mo after acute infection, we set out to study the pattern and duration of IgG antibody response to various SARS-CoV-2 antigens in asymptomatic and symptomatic patients in a community setting. Herein, we show the correlation of IgG anti-spike protein S1 subunit, receptor binding domain, nucleocapsid, and virus neutralizing antibody titers with each other and with clinical features such as length and severity of COVID-19 illness. More importantly, using orthogonal measurements, we found the IgG titers to persist for more than 4 mo post symptom onset, implying that long-lasting immunity to COVID-19 from infection or vaccination might be observed, as seen with other coronaviruses such as SARS and Middle East respiratory syndrome.


Subject(s)
Antibodies, Viral/blood , COVID-19/immunology , Immunity, Humoral , Immunoglobulin G/blood , Adult , Female , Humans , Immunoassay , Longitudinal Studies , Male , Middle Aged , SARS-CoV-2/immunology
SELECTION OF CITATIONS
SEARCH DETAIL